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Abstract: Recently Sarhan and Balakrishnan (Journal of Multivariate Analysis, 98, 1508 - 1527, 2007) introduced a new singular
bivariate distribution using generalized exponential and exponential distributions. They discussed several interesting properties of this
new distribution. Sarhan-Balakrishnan did not discuss any estimation procedure of the unknown parameters. In Sarhan-Balakrishnan
model, there is no scale parameter. Unfortunately without the presence of any scale parameter, it is difficult to use it for any data analysis
purposes. We introduce a scale parameter in the model and it becomes a four-parameter bivariate model. The usual maximum likeli-
hood calculation involves a four dimensional optimization problem. We discuss the maximum likelihood estimation of the unknown
parameters using EM algorithm, and it involves only a one-dimensional optimization calculation at each M-step of the EM algorithm.
One data analysis has been performed for illustrative purposes. The performance of the EM algorithm is very satisfactory.

Keywords: Generalized exponential distribution; Absolute continuous distribution; EM algorithm; Hazard function; Monte Carlo
simulation.

1. Introduction

Recently Sarhan and Balakrishnan (2007) proposed a new
class of bivariate distributions based on generalized ex-
ponential and exponential distributions. From now on for
brevity we denote this distribution as SBBV distribution.
The SBBV is a singular distribution, and its cumulative
distribution function (CDF) can be expressed as a mixture
of an absolute continuous bivariate distribution and a sin-
gular distribution, similar to the Marshall and Olkin (1967)
bivariate exponential distribution (MOBE).

Sarhan and Balakrishnan (2007) obtained the joint prob-
ability density function (PDF), marginal and conditional
probability density functions. It is observed that the mo-
ments and moment generating function can not be obtained
in explicit form, but they can be obtained using special
functions. Although, Sarhan and Balakrishnan (2007) dis-
cussed several interesting properties, but they did not dis-
cuss any estimation procedure of the unknown parame-
ters. We re-visited the model, discuss further properties of
this new distribution and provide maximum likelihood es-
timates (MLEs) of the unknown parameters.

Sarhan and Balakrishnan (2007) did not introduce any
scale parameter in their model. Unfortunately, without the
presence of any scale parameter, it may be difficult to use
it in practice for any data analysis purposes. We introduce
the scale parameter in the model and it makes SBBV as a
four-parameter model. It is not easy to compute the max-
imum likelihood estimators of the four unknown param-
eters. To compute the MLEs directly, one needs to solve
a four dimensional optimization problem. To avoid this
problem, we treat this as a missing value problem, and we
use the EM algorithm to compute the MLEs of the un-
known parameters. For implementing the EM algorithm,
it is observed that at each M-step, one needs to solve a
one-dimensional optimization problem. It is much easier
to solve than the direct four dimensional optimization prob-
lem. One real data set has been analyzed for illustrative
purposes, and the performance is quite satisfactory.
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The rest of the paper is organized as follows. In section 2, we provide the SBBV model and briefly discuss its different
properties. The implementation of the EM algorithm is provided in section 3. Data analysis are presented in section 4.
Finally we conclude the paper in section 5.

2. Sarhan-Balakrishnan Bivariate Model

The random variable X has a generalized exponential (GE) distribution with the shape parameter α > 0 and the scale
parameter λ > 0, if it has the following cumulative distribution function (CDF);

F (x;α, λ) =
(
1 − e−λx

)α
; x > 0. (1)

The corresponding probability density function (PDF) is;

f(x;α, λ) = αλe−λx
(
1 − e−λx

)α−1
. (2)

From now on a generalized exponential random with the PDF (2) and the CDF (1) will be denoted by GE(α, λ). The GE
was originally introduced by Gupta and Kundu (1999) for analyzing lifetime data, as an alternative to Weibull and gamma
distributions. Extensive work has been done on the GE distribution since its inception. The readers are refereed to the
recent review article by Gupta and Kundu (2007) and the references cited there. Note that when α = 1, it coincides with
the exponential distribution. In this respect it is a generalization of the exponential distribution similarly as the Weibull
and gamma distributions but in different ways.

Now let us define the SBBV distribution. Suppose, U0 follows (∼) GE(1, λθ), U1 ∼ GE(α1, λ) and U2 ∼ GE(α2, λ)
and they are independently distributed. Define

Y1 = min{U1, U0}, Y2 = min{U2, U0}. (3)

Then bivariate random vector (Y1, Y2) is said to have SBBV distribution, see Sarhan and Balakrishnan (2007). From now
on it will be denoted by SBBV(α1, α2, θ, λ). The joint survival function and the joint PDF of (Y1, Y2) can be written as

SY1,Y2(y1, y2) = e−λθz
{
1 − (1 − e−λy1)α1

}{
1 − (1 − e−λy2)α2

}
, (4)

where z = max{y1, y2}, y1 > 0, y2 > 0. The corresponding joint PDF can be written as

fY1,Y2(y1, y2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(y1, y2) if y1 > y2 > 0

f2(y1, y2) if y2 > y1 > 0

f0(y1, y2) if y1 = y2 > 0

, (5)

where

f1(y1, y2) = λ2α2e
−λ(θy1+y2)

(
1 − e−λy2

)α2−1 × (
θ − θ(1 − e−λy1)α1 + α1e

−λy1(1 − e−λy1)α1−1
)
, (6)

f2(y1, y2) = λ2α1e
−λ(θy2+y1)

(
1 − e−λy1

)α1−1 × (
θ − θ(1 − e−λy2)α2 + α2e

−λy2(1 − e−λy2)α2−1
)
, (7)

and

f0(y, y) = λθe−λθy
2∏

i=1

[
1 − (

1 − e−λy
)αi

]
, (8)

see Sarhan and Balakrishnan (2007). Note that λ plays the role of a scale parameter, and Sarhan and Balakrishnan (2007)
used λ = 1 in their paper.

The function fY1,Y2(·, ·) may be considered to be a density function of the SBBV distribution, if it is understood that
the first two terms are densities with respect to the two-dimensional Lebesgue measure and the third term is a density
function with respect to one dimensional Lebesgue measure, see for example Bemis and Bain (1972).

The SBBV model may be used as a competing risk model or a shock model similarly as the MOBE model. The
marginals of the SBBV model can take different shapes. The hazard functions of the marginals can be increasing (α > 1),
decreasing (α < 1) or constant (α = 1). It may be easily observed that for all y1 > 0 and y2 > 0

SY1,Y2(y1, y2) ≥ SY1(y1)SY2(y2) ⇔ FY1,Y2(y1, y2) ≥ FY1(y1)FY2(y2). (9)

Since (9) is true, Y1 and Y2 are positive quadrant dependent, i.e. for every pair of increasing functions h1(·) and h2(·)
Cov(h1(Y1), h2(Y2)) ≥ 0. (10)
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3. Maximum Likelihood Estimators

In this section we discuss the maximum likelihood estimators (MLEs) of the unknown parameters of the SBBV(α1, α2, θ, λ)
model, based on the following sample {(y11, y12), . . . , (yn1, yn2)}. We use the following notation;

I1 = {i; yi1 > yi2}, I2 = {i; yi1 < yi2}, I0 = {i; yi1 = yi2 = yi}, I = I1 ∪ I2 ∪ I3,

n0 = |I0|, n1 = |I1|, n2 = |I2|.
Based on the above sample the log-likelihood function becomes;

l(γ) =
∑
i∈I1

ln f1(yi1, yi2) +
∑
i∈I2

ln f2(yi1, yi2) +
∑
i∈I0

ln f0(yi, yi), (11)

here γ = (α1, α2, θ, λ). The MLEs of γ can be obtained by maximizing (11) with respect to γ. It does not have any
explicit solutions and the solutions can be obtained only by solving a four dimensional optimization problem, which is
clearly not a trivial issue. To avoid that we propose to use the EM algorithm, by treating this problem as a missing value
problem.

First let us identify the complete observations as well as the missing observations. It will help us to formulate the
EM algorithm. Suppose, instead of (Y1, Y2), (U0, U1, U2) are known. For, example we observe {ui0, ui1, ui2}, for i =
1, . . . , n. The log-likelihood function based on ui’s becomes

l(γ) = n(ln α1 + ln α2) + (α1 − 1)
n∑

i=1

ln(1 − e−λui1) + (α2 − 1)
n∑

i=1

ln(1 − e−λui2)

+3n ln λ − λθ

n∑
i=1

ui0 − λ(
n∑

i=1

ui1 +
n∑

i=1

ui2). (12)

For a given λ, the MLEs of α1, α2 and θ can be obtained as

α̂1(λ) = − n∑n
i=1 ln(1 − e−λui1)

, α̂2(λ) = − n∑n
i=1 ln(1 − e−λui2)

, θ̂(λ) =
n

λ
∑n

i=1 ui0
, (13)

and finally by maximizing the profile log-likelihood function l(α̂1(λ), α̂2(λ), θ̂(λ), λ) with respect to λ, the MLE of λ
can be obtained. Therefore, it is clear that if all the ui’s are known, the MLEs of the unknown parameters can be obtained
by solving a one dimensional optimization problem. We exploit this property to formulate the EM algorithm.

The following Table 1 will be needed for further development. The exact expressions for pijk’s are presented in the

Case No. Different Cases Prob Y1 & Y2 Set

1 U0 < U1 < U2 p012 U0 = Y1 = Y2 I0

2 U0 < U2 < U1 p021 U0 = Y1 = Y2 I0

3 U1 < U0 < U2 p102 U1 = Y1 < Y2 = U0 I2

4 U1 < U2 < U0 p120 U1 = Y1 < Y2 = U2 I2

5 U2 < U0 < U1 p201 U2 = Y2 < Y1 = U0 I1

6 U2 < U1 < U0 p210 U2 = Y2 < Y1 = U1 I1

Table 1 Different cases, the associated probabilities and the corresponding Y1 and Y2 are presented.

Appendix A. The following observations are useful. In set I0, only U0 is observable, both U1 and U2 are not observable. In
set I1, U2 is always observable, but U0 (U1) is observable for Case No. 5 (6). Similarly, in set I2, U1 is always observable,
and U0 (U2) is observable for case no. 3 (4). Further, we need the following notation also.

b1 = P (U2 < U0 < U1|Y2 < Y1) =
p201

p201 + p210
, b2 = P (U2 < U1 < U0|Y2 < Y1) =

p210

p201 + p210
,

c1 = P (U1 < U0 < U2|Y1 < Y2) =
p102

p102 + p120
, c2 = P (U1 < U2 < U0|Y1 < Y2) =

p120

p102 + p120
.
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We also need the following;

a0(u) = E(U0|U0 > u) = u +
1
λθ

, (14)

a1(u) = E(U1|U1 > u) =

∫ e−λu

0
(1 − y)α1−1 ln ydy

λ(1 − (1 − e−λu)α1)
, (15)

a2(u) = E(U2|U2 > u) =

∫ e−λu

0
(1 − y)α2−1 ln ydy

λ(1 − (1 − e−λu)α2)
. (16)

With these notation, we are now able to write the ‘E’-step of the EM algorithm. Note that the ‘E’-step of the ’EM’
algorithm can be obtained by replacing the missing values with their expected values. The corresponding log-likelihood
function is known as the ‘pseudo-log-likelihood’ function.

If i ∈ I0, the ‘pseudo-log-likelihood’ contribution of (yi, yi) is

ln f(a1(yi);α1, λ) + ln f(a2(yi);α2, λ) + ln f(yi; 1, λθ).

If i ∈ I1, the ‘pseudo-log-likelihood’ contribution of (yi1, yi2) is

b1 [ln f(a1(yi1);α1, λ) + ln f(yi2;α2, λ) + ln f(yi1; 1, λθ)] +
b2 [ln f(yi1;α1, λ) + ln f(yi2;α2, λ) + ln f(a0(y1i); 1, λθ)] ,

and if i ∈ I2, the ‘pseudo-log-likelihood’ contribution of (yi1, yi2) is

c1 [ln f(yi1;α1, λ) + ln f(a2(yi2);α2, λ) + f(yi2; 1, λθ)] +
c2 [ln f(yi1;α1, λ) + ln f(yi2;α2, λ) + ln f(a0(yi2); 1, λθ)] .

Combining the three, the ’pseudo-log-likelihood’ function of the observed data can be written as;

lpseudo(γ) = g1(α1, λ) + g2(α2, λ) + g3(θ, λ), (17)

where

g1(α1, λ) =
∑
i∈I0

ln f(a1(yi);α1, λ) + b1

∑
i∈I1

ln f(a1(yi1);α1, λ) + b2

∑
i∈I1

ln f(yi1;α1, λ) +

∑
i∈I2

ln f(yi1;α1, λ) (18)

g2(α2, λ) =
∑
i∈I0

ln f(a2(yi);α2, λ) +
∑
i∈I1

ln f(yi2;α2, λ) + c1

∑
i∈I2

ln f(a2(yi2);α2, λ) +

c2

∑
i∈I2

ln f(yi2;α2, λ) (19)

g0(θ, λ) =
∑
i∈I0

ln f(yi; 1, θλ) + b1

∑
i∈I1

ln f(yi1; 1, θλ) + b2

∑
i∈I1

ln f(a0(yi1); 1, θλ) +

c1

∑
i∈I2

ln f(yi2; 1, θλ) + c2

∑
i∈I2

ln f(a0(yi2); 1, θλ). (20)

Now the ‘M’-step of the ‘EM’ algorithm involves maximizing (17) with respect to the unknown parameters. It can be
performed in two stages. Note that for fixed λ, the maximization of g1(α1, λ), g2(α2, λ) and g3(θ, λ) with respect to α1,
α2 and θ respectively can be obtained as

α̂1(λ) = − n

h1(λ)
, α̂2(λ) = − n

h2(λ)
, θ̂(λ) =

n

h3(λ)
,

where

h1(λ) =
∑
i∈I0

ln(1 − e−λa1(yi)) + b1

∑
i∈I1

ln(1 − e−λa1(yi1)) + b2

∑
i∈I1

ln(1 − e−λyi1) +

∑
i∈I2

ln(1 − e−λyi1)
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h2(λ) =
∑
i∈I0

ln(1 − e−λa2(yi)) +
∑
i∈I1

ln(1 − e−λyi2) + c1

∑
i∈I2

ln(1 − e−λa2(yi2)) +

c2

∑
i∈I2

ln(1 − e−λyi2)

h0(λ) = λ

[∑
i∈I0

yi + b1

∑
i∈I1

yi1 + b2

∑
i∈I1

a0(yi1) + c1

∑
i∈I2

yi2 + c2

∑
i∈I2

a0(yi2)

]
.

The maximization of the lpseudo(γ) can be obtained by maximizing

g1(α̂1(λ), λ) + g2(α̂2(λ), λ) + g3(θ̂(λ), λ) (21)

with respect to λ. Although, we could not prove it theoretically that (21) is an unimodal function, but in our experiments
it is always an unimodal function.

We suggest the following algorithm to obtain the MLEs of α1, α2, θ and λ;
Algorithm

–Step 1: Take some initial guesses of γ, say γ(0) = (α(0)
1 , α

(0)
2 , θ(0), λ(0)).

–Step 2: Compute a0, a1, a2, b1, b2, c1, c2.
–Step 3: Obtain λ(1) by maximizing (21) with respect to λ.
–Step 4: Obtain γ(1) = (α(1)

1 , α
(1)
2 , θ(1), λ(1)), where

α
(1)
1 = α̂1(λ(1)), α

(1)
2 = α̂2(λ(1)), θ(1) = θ̂(λ(1)).

–Step 5: Compare γ(0) and γ(1), if they are close to each other stop the iterative process, otherwise replace γ(0) by γ(1)

and continue the process.

4. Data Analysis

The following data represent the American Football (National Football League) League data and they are obtained from
the matches played on three consecutive weekends in 1986. The data were first published in ‘Washington Post’ and they
are also available in Csorgo and Welsh (1989).

It is a bivariate data set, and the variables Y1 and Y2 are as follows: Y1 represents the ‘game time’ to the first points
scored by kicking the ball between goal posts, and Y2 represents the ‘game time’ to the first points scored by moving the
ball into the end zone. These times are of interest to a casual spectator who wants to know how long one has to wait to
watch a touchdown or to a spectator who is interested only at the beginning stages of a game.

The data (scoring times in minutes and seconds) are represented in Table 2. The data set was first analyzed by Csorgo
and Welsh (1989), by converting the seconds to the decimal minutes, i.e. 2:03 has been converted to 2.05, 3:59 to 3.98
and so on. We have also adopted the same procedure.

The variables Y1 and Y2 have the following structure: (i) Y1 < Y2 means that the first score is a field goal, (ii) Y1 = Y2

means the first score is a converted touchdown, (iii) Y1 > Y2 means the first score is an unconverted touchdown or safety.
In this case the ties are exact because no ‘game time’ elapses between a touchdown and a point-after conversion attempt.
Therefore, here ties occur quite naturally and they can not be ignored. It should be noted that the possible scoring times
are restricted by the duration of the game but it has been ignored similarly as in Csorgo and Welsh (1989).

If we define the following random variables:

U1 = time to first field goal

U2 = time to first safety or unconverted touchdown

U3 = time to first converted touchdown,

then, Y1 = min{U1, U3} and Y2 = min{U2, U3}. Therefore, (Y1, Y2) has a similar structure as the MOBE model or the
proposed SBBV model. Csorgo and Welsh (1989) analyzed the data using the MOBE model but concluded that it does
not work well. They claimed that Y2 may be exponential but Y1 is not.

We would like to examine the behavior of the hazard function of Y1. We first look at the scaled TTT plot as suggested
by Aarset (1987), which provides an idea of the shape of the hazard function of a distribution. For a family with the

survival function S(y) = 1 − F (y), the scaled TTT transform, with H−1(u) =
∫ F−1(u)

0

S(y)dy defined for 0 < u < 1
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Y1 Y2 Y1 Y2 Y1 Y2

2:03 3:59 5:47 25:59 10:24 14:15
9:03 9:03 13:48 49:45 2:59 2:59
0:51 0:51 7:15 7:15 3:53 6:26
3:26 3:26 4:15 4:15 0:45 0:45
7:47 7:47 1:39 1:39 11:38 17:22

10:34 14:17 6:25 15:05 1:23 1:23
7:03 7:03 4:13 9:29 10:21 10:21
2:35 2:35 15:32 15:32 12:08 12:08
7:14 9:41 2:54 2:54 14:35 14:35
6:51 34:35 7:01 7:01 11:49 11:49

32:27 42:21 6:25 6:25 5:31 11:16
8:32 14:34 8:59 8:59 19:39 10:42

31:08 49:53 10:09 10:09 17:50 17:50
14:35 20:34 8:52 8:52 10:51 38:04

Table 2 American Football League (NFL) data
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Figure 1 Scaled TTT transform for Y1.

is g(u) = H−1(u)/H−1(1). The corresponding empirical version of the scaled TTT transform is given by gn(r/n) =

H−1
n (r/n)/H−1

n (1) = [(
r∑

i=1

yi:n) + (n − r)yr:n]/(
n∑

i=1

yi:n), where r = 1, . . . , n and yi:n, i = 1, . . . , n represent the

order statistics of the sample. It has been shown by Aarset (1987) that the scaled TTT transform is convex (concave) if the
hazard rate is decreasing (increasing), and for bathtub (unimodal) hazard rates, the scaled TTT transform is first convex
(concave) and then concave (convex). We plot the scaled TTT transform for Y1 in Figure 1. From the Figure 1 it is quite
apparent that Y1 has increasing hazard function. Therefore, SBBV may be used to analyze this data set.

We analyze the data using the SBBV model. We have taken the initial guesses of α1, α2, θ and λ are all equal to 1. The
profile log-likelihood function of λ as given by (21) is provided in Figure 2. It is an unimodal function. The maximization
at each step of the EM algorithm is very simple. The EM algorithm converges after 4 steps and the estimates of α1, α2,
θ and λ become 5.5919, 6.6921, 0.8173 and 1.1112 respectively. The corresponding log-likelihood value is -165.8216.
The 95% bootstrap confidence intervals of α1, α2, θ and λ are (3.1395, 7.0714), (3.6401, 9.1141), (0.7211, 1.1581) and
(0.8208, 1.3412) respectively.

c© 2012 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. 1, No. 3, 163-170 (2012) / www.naturalspublishing.com/Journals.asp 169

λ

Pr
of

ile
 lo

g−
lik

el
ih

oo
d 

fu
nc

tio
n

−160

−158

−156

−154

−152

−150

−148

−146

 0.8  1  1.2  1.4  1.6  1.8  2

Figure 2 Profile pseudo log-likelihood function of λ as given by (21).

For comparison purposes, we have also fitted the MOBE model to this data set. The estimates of the three parameters
are 0.0715, 0.0456 and 0.0030 respectively and the corresponding log-likelihood value is -231.4609. Since MOBE model
is not a sub-model of SBBV, we can not use the chi-square test directly. Although, based on AIC or BIC values, we can
say that SBBV model is preferable than MOBE model to analyze this data set.

5. Conclusions

In this paper we have mainly consider the maximum likelihood estimation of the unknown parameters of the Sarhan-
Balakrishnan bivariate distribution. With the presence of the scale parameter, it becomes a four-parameter model. It is
observed that the calculation of the maximum likelihood estimates is not a trivial issue. We suggested to use the EM
algorithm to compute the maximum likelihood estimators of the unknown parameters. It may be mentioned that our
method can be used to compute the maximum likelihood estimators of the unknown parameters of the MOBE model also.
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APPENDIX A

In this appendix we provide different expressions of pijk.

p012 = P (U0 < U1 < U2) =
∫ ∞

0

θe−θy

[
1 − (1 − e−y)α1 − α1

α1 + α2

(
1 − (1 − e−y)α1+α2

)]
dy

p021 = P (U0 < U2 < U1) =
∫ ∞

0

θe−θy

[
1 − (1 − e−y)α2 − α2

α1 + α2

(
1 − (1 − e−y)α1+α2

)]
dy

p102 = P (U1 < U0 < U2) =
∫ ∞

0

θe−θy(1 − e−y)α1
(
1 − (1 − e−y)α2

)
dy
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p201 = P (U1 < U0 < U2) =
∫ ∞

0

θe−θy(1 − e−y)α2
(
1 − (1 − e−y)α1

)
dy

p120 = P (U1 < U2 < U0) =
α2

α1 + α2

∫ ∞

0

θe−θy(1 − e−y)α1+α2dy

p210 = P (U2 < U1 < U0) =
α1

α1 + α2

∫ ∞

0

θe−θy(1 − e−y)α1+α2dy
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